Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma
نویسندگان
چکیده
BACKGROUND Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells' ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. METHODS A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. RESULTS Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. CONCLUSIONS Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment.
منابع مشابه
Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation.
Successful tumor eradication by chimeric antigen receptor-expressing (CAR-expressing) T lymphocytes depends on CAR T cell persistence and effector function. We hypothesized that CD4+ and CD8+ T cells may exhibit distinct persistence and effector phenotypes, depending on the identity of specific intracellular signaling domains (ICDs) used to generate the CAR. First, we demonstrate that the ICOS ...
متن کاملDevelopment of chimeric antigen receptor (CAR) T-cell immunotherapy for glioblastoma targeting epidermal growth factor receptor variant III (EGFRvIII)
Glioblastoma multiforme (GBM) is the most common brain tumor, with a poor prognosis of less than 14 months after initial diagnosis. Gene amplification and mutation of epidermal growth factor receptor (EGFR) are frequently observed in primary GBM. The most common variant of EGFR, known as EGFRvIII, is expressed in approximately 30% of GBM patients, but is absent on normal cells, making it a desi...
متن کاملEngineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کاملمقایسه عملکرد چهار سلول T مهندسیشده با رسپتور کایمریک حاوی نانوبادی ضد HER2 در مواجهه با سلولهای سرطانی سینه
Background and Objective: Harnessing immune system and its powerful arm, T lymphocytes, against tumor cells are yielding promising results in cancer immunotherapy. Using two arms of immune system in the designing of engineered T cells expressing chimeric receptors with anti-HER2 nanobody (camelid single domain antibody) seems to be an effective strategy in the targeted cancer therapy. ...
متن کاملRetargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging
There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy agai...
متن کامل